Exercise 61

Find an equation of the normal line to the curve $y=\sqrt{x}$ that is parallel to the line $2 x+y=1$.

Solution

Writing the given equation of the line as

$$
y=-2 x+1,
$$

we see that it has a slope of -2 . The aim is to take the derivative of the given function and find where it's equal to the negative reciprocal, $1 / 2$.

$$
\begin{aligned}
y^{\prime} & =\frac{d}{d x}(\sqrt{x}) \\
& =\frac{d}{d x}\left(x^{1 / 2}\right) \\
& =\frac{1}{2} x^{-1 / 2}
\end{aligned}
$$

Set this equal to $1 / 2$ and solve for x.

$$
\begin{gathered}
\frac{1}{2} x^{-1 / 2}=\frac{1}{2} \\
x^{-1 / 2}=1 \\
x=1
\end{gathered}
$$

Plug this value of x into the given function to get the corresponding y-value on the curve.

$$
y(1)=\sqrt{1}=1 \quad \Rightarrow \quad(1,1)
$$

Finally, determine the equation of the line with slope -2 that goes through the point $(1,1)$.

$$
y-1=-2(x-1)
$$

Below is a plot of the given curve, the given line, and this normal line parallel to the given line.

